Data Science

Applied Predictive Modelling

Applied Predictive Modelling

Source cran Chapter 1 Introduction Prediction Versus Interpretation, Key Ingredients of Predictive Models; Terminology; Example Data Sets and Typical Data Scenarios; Overview; Notation (15 pages, 3 figures) Part I: General Strategies Chapter 2 A Short Tour of the Predictive Modeling Process Case Study: Predicting Fuel Economy; Themes; Summary (8 pages, 6 figures, R packages used) Chapter 3 Data Pre-Processing Case Study: Cell Segmentation in High-Content Screening; Data Transformations for Individual Predictors; Data Transformations for Multiple Predictors; Dealing with Missing Values; Removing Variables; Adding Variables; Binning Variables; Computing; Exercises (32 pages, 11 figures, R packages used)

Reading List

Blogs Data Science Austria: data-science-austria.at persönlicher Blog: harlecin.netlify.com Hackernews: news.ycombinator.com R-Bloggers: r-bloggers.com Reddit: reddit.com/r/MachineLearning